博客
关于我
人工智能、深度学习、机器学习常见面试题141~160
阅读量:493 次
发布时间:2019-03-06

本文共 482 字,大约阅读时间需要 1 分钟。

随机森林算法中,袋外数据(OOB)是一项重要的技术概念。随机森林通过Bagging方法结合多个决策树模型来提升预测性能。在Bagging方法中,Bootstrap每次抽取的样本数量约为1313个,这些样本不会出现在最终的训练集中。这些未被使用的样本被称为袋外数据OOB,其主要用途是替代传统的测试集误差估计方法。

袋外数据的计算方法如下:在随机森林已经生成完毕后,使用袋外数据对模型性能进行测试。将袋外数据作为输入,带入之前生成的随机森林分类器中,分类器会输出相应的分类结果。由于袋外数据的真实标签已知,可以将分类器的预测结果与真实标签进行对比,统计分类错误的数量记为X。袋外数据误差的计算公式为X/O,其中O是袋外数据的总数。这种方法已经被证明是无偏估计,因此在随机森林算法中无需额外的交叉验证或单独测试集来获取测试集误差的无偏估计。

袋外数据的优势在于其无偏性,以及能够更好地反映模型在实际应用中的性能。但其也存在一些不足之处:首先,计算袋外数据需要额外的计算资源,其次,袋外数据的生成依赖于随机森林的具体实现。因此,在实际应用中需要根据具体需求权衡其优缺点。

转载地址:http://tooyz.baihongyu.com/

你可能感兴趣的文章
npm和yarn的使用对比
查看>>
npm学习(十一)之package-lock.json
查看>>
npm安装crypto-js 如何安装crypto-js, python爬虫安装加解密插件 找不到模块crypto-js python报错解决丢失crypto-js模块
查看>>
npm报错unable to access ‘https://github.com/sohee-lee7/Squire.git/‘
查看>>
npm的常用配置项---npm工作笔记004
查看>>
npm的问题:config global `--global`, `--local` are deprecated. Use `--location=global` instead 的解决办法
查看>>
npm编译报错You may need an additional loader to handle the result of these loaders
查看>>
npm配置安装最新淘宝镜像,旧镜像会errror
查看>>
npm错误Error: Cannot find module ‘postcss-loader‘
查看>>
NPOI之Excel——合并单元格、设置样式、输入公式
查看>>
NPOI利用多任务模式分批写入多个Excel
查看>>
NPOI在Excel中插入图片
查看>>
NPOI格式设置
查看>>
Npp删除选中行的Macro录制方式
查看>>
NR,NF,FNR
查看>>
nrf开发笔记一开发软件
查看>>
NS3 IP首部校验和
查看>>
NSDateFormatter的替代方法
查看>>
NSError 的使用方法
查看>>
nsis 安装脚本示例(转)
查看>>